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The linear instability of a barotropic flow with uniform horizontal shear in a stratified
rotating fluid is investigated with respect to perturbations invariant in the alongflow
direction. The flow can be inertially unstable if there is sufficiently strong anticyclonic
shear, but only for sufficiently high Reynolds numbers Re. We determine the critical
Reynolds numbers required for amplification of the instability as a function of Prandtl
number, strength of the stratification and magnitude of the shear. The vertical scales
at the onset of the instability are calculated. For Prandtl number P < 1.44 instability
always sets in through stationary overturning motions, for P > 1.44 it may also
commence through overstable (oscillatory) motions. For Re exceeding the critical
value, we determine the vertical scale of the most rapidly amplifying modes and the
corresponding growth rates and how they vary with Re, P , the shear and the strength
of stratification.

1. Introduction
Inertial instability was first primarily studied in the context of the stability of zonally

symmetric atmospheric flows, encircling the Earth’s rotation axis. Whereas a wide
variety of instabilities may arise, inertial instability is generally understood to refer to
instability due to zonally invariant perturbations. Because of this presumed alongflow
invariance of the perturbations, it is also sometimes called symmetric instability. An
example of the instability is the appearance of the well-known toroidal Taylor–Couette
vortices in flows between concentric rotating cylinders. For such circular flows it is
called centrifugal stability. Rayleigh’s (1916) criterion for centrifugal instability is that
the square of the angular momentum decreases with radius, or, equivalently, that the
Rayleigh discriminant Φ < 0 (Drazin & Reid 1981). For a parallel shear flow in a
system rotating with angular velocity Ω , the criterion for instability is (Charney 1973)

Φ = f Q < 0, with Q = f + ωz (1.1)

the absolute vorticity, f =2Ω the Coriolis parameter, and ωz the vertical (z)
component of the relative vorticity (along the axis of rotation, see figure 1 for
symbol definitions). This is for barotropic flows, i.e. flows with no vertical shear. In
geophysical flows, (1.1) is the inviscid criterion for instability of barotropic parallel
flows on a mid-latitude f -plane. For baroclinic flows in a stably stratified fluid,
the criterion for instability remains f Q < 0, with Q replaced by the Ertel potential

† With an appendix by Stephen D. Griffiths
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Figure 1. Diagram of the anticyclonically sheared barotropic flow in a rotating system. Inertial
instability is only possible when the Rossby number for the anticyclonic shear Ro = −Λ/f < −1,
so that the Rayleigh discriminant Φ = f Q= f (f − Λ) < 0.

vorticity (Hoskins 1974). On the equatorial β-plane, the criterion for instability follows
by setting f =βy, with y latitude (y = 0 at the equator) and β the latitudinal gradient
of the Coriolis parameter at the equator.

Inviscid linear theory predicts that the inertial instability is manifested as over-
turning motions in the meridional plane, largely confined to the region where f Q < 0
(Ooyama 1966). This has been confirmed in numerous studies. In ideal fluids, the
overturning motions associated with inertial instability amplify most rapidly if their
scales are vanishingly small (e.g. Stone 1966; Dunkerton 1981; Bayly 1988; Smyth &
Peltier 1994; Smyth & McWilliams 1998; Griffiths 2003a; Billant & Gallaire 2005).
For barotropic flows generally the growth rate s of normal-modes perturbations
(proportional to exp(st), with t time), is bounded from above according to s < |f Q|1/2,
with f Q the negative minimum of f Q (see Griffiths 2003b; Kloosterziel, Carnevale &
Orlandi 2007). This inviscid maximum growth rate is attained for infinitely shallow
overturning motions, i.e. when vertical scales become vanishingly small.

For barotropic flows in a stratified environment, there is generally a threshold
vertical scale above which no growth occurs. This vertical cutoff scale decreases with
increasing buoyancy frequency N . Since diffusion preferentially damps smaller scales,
for increasingly stronger stratification the cutoff scale may become so small that no
growth will occur at all, unless the Reynolds number Re is sufficiently high. In that
case, only perturbations with vertical scales within a finite range will amplify. Within
this range a maximum growth rate is found at a specific vertical scale. Hence, if a flow
is subjected to small (symmetric) perturbations and the ‘fastest’ mode is excited, one
expects meridional motions with this scale to emerge, before the evolution becomes
truly fully nonlinear (see e.g. Griffiths 2003a; Kloosterziel et al. 2007).

Despite the extensive research on inertial instability, few studies have addressed
the scale selection in any detail. It appears that only Griffiths’ (2003a) study of a
uniform shear flow on the equatorial β-plane contains precise predictions regarding
the scale selection and maximal growth rates. The marginal stability boundary was first
discussed by Dunkerton (1981). In both studies (with constant buoyancy frequency N ),
the Prandtl number was P = 1. When P �= 1, Dunkerton (1982) found that instability
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can set in through overstability, but few specific results regarding the scale selection
are mentioned.

Whereas any finite shear at the equator implies (inviscid) inertial instability, on
the f -plane it requires a flow to have sufficiently strong anticyclonic shear. The scale
selection in such flows has not been investigated theoretically before in any detail.
From the point of view of mid-latitude (ocean) numerical modelling, it is important to
know what Reynolds number is minimally required to allow the instability to unfold.
Also it is important to know what length scales are associated with the instability,
since the instability will not be observed if these scales fall below the resolution in a
numerical model. In particular, the present study was motivated by the question of
what Reynolds numbers and resolutions are required if values of N/f are increased to
large oceanically relevant values, and whether the scale selection depends sensitively
on the value of P .

In this paper we analyse the linear (inertial) instability of a barotropic flow on the
f -plane with uniform anticyclonic horizontal shear, which implies constant f Q < 0.
The environment is linearly stratified, so that N is constant. The flow is artificially
terminated at lateral vertical walls, where we prescribe free-slip boundary conditions.
The normal-modes analysis is straightforward because the dispersion relation is
algebraic (a cubic in the normal-modes growth rate). The problem is briefly discussed
by Dunkerton (1982), who stated that the marginal stability criteria are qualitatively
similar to that for the uniform shear flow on the β-plane. But, details were not
provided.

In § 2 we discuss the linear perturbation equations and the boundary conditions.
The exact marginal stability boundaries are calculated in § 3. We formulate it in terms
of critical Reynolds numbers as a function of |f Q|/f 2, N/f and P . The vertical scales
of the normal modes that appear at the onset of instability are also determined.

In § 4 we determine the fastest growing modes and the growth rates as we move into
the unstable regime, with emphasis on the limit of large Re. In § 4.1 we first consider
Prandtl number P = 1, which is a special case because the maximal growth rates and
corresponding vertical scales can be determined in closed form. But, expansions in
inverse fractional powers of Re are found to be remarkably accurate, in that the first
few terms give excellent approximations. In § 4.2 we compare the results obtained thus
far with those reported in the equatorial β-plane studies by Dunkerton (1981, 1982)
and Griffiths (2003a). Finally, in § 4.3 we discuss the scale selection when P �= 1.

In § 5 we conclude with a summary of the main results and remarks on how this
work may be extended to more realistic unbounded flows with, for example, uniform
shear in a transition region between two counterflowing uniform currents. For such
a flow one would have constant f Q < 0 in a strip of finite width, while f Q = f 2

outside this region. We expect that the structure of the marginal stability boundaries,
and the Reynolds number dependence in the scale selection process, will qualitatively
survive if the analysis is extended to such unbounded flows, but this has not yet been
fully investigated.

A substantial clarification of the differences between our results on the one hand,
and the β-plane flows and barotropic vortices on the other, is provided in Appendix
B (by S. D. Griffiths).

2. The model and simplifying assumptions
We consider a steady barotropic parallel flow u = U (y) in the x-direction, with

uniform shear dU/dy = Λ, i.e. U = U0+Λy. The fluid is assumed to be Boussinesq and
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has a stable, linear density stratification ρ(z) = ρ0(1 − (N 2/g)z); g is the gravitational
constant, ρ the density and ρ0 a reference density; N2 = −(g/ρ0)dρ/dz � 0 is the
square of the buoyancy frequency, which is constant. The density is assumed to
depend linearly on temperature. The flow is in geostrophic and hydrostatic balance
in the rotating system. The stability with respect to perturbations invariant in the
alongflow (x)-direction is as usual investigated by introducing velocity perturbations
u′, v′, w′(y, z, t), density perturbation ρ ′(y, z, t) and pressure perturbation p′(y, z, t),
and subsequent linearization about the steady state. The linearized equations are (see
e.g. Emanuel 1979) (

∂

∂t
− ν∇2

)
u′ + [Λ − f ]v′ = 0, (2.1)(

∂

∂t
− ν∇2

)
v′ + f u′ = − 1

ρ0

∂p′

∂y
, (2.2)(

∂

∂t
− ν∇2

)
w′ + g

ρ ′

ρ0

= − 1

ρ0

∂p′

∂z
, (2.3)(

∂

∂t
− κ∇2

)
ρ ′ + w′ dρ

dz
= 0, (2.4)

∂v′

∂y
+

∂w′

∂z
= 0; (2.5)

ν, κ are viscosity and diffusivity of heat, respectively, and ∇2 is the Laplace operator.
The flow is laterally terminated by rigid free-slip walls at y = 0, L. That is, we assume

v′ = 0,
∂w′

∂y
= 0 at y = 0, L. (2.6)

Additional boundary conditions for ρ ′ and u′ are required. These have to be consistent
with the governing equations (2.1)–(2.4) and (2.6). For example, in the inviscid limit,
(2.1) implies with (2.6) that ∂tu

′ = 0 at y =0, L. Hence, if at some initial time u′ = 0
at the boundaries, it will remain so. The vorticity equation

∂

∂t

[
∂w′

∂y
− ∂v′

∂z

]
− f

∂u′

∂z
+

g

ρ0

∂ρ ′

∂y
= ν∇2

[
∂w′

∂y
− ∂v′

∂z

]
(2.7)

shows that in the inviscid limit −f ∂zu
′ + (g/ρ0)∂yρ

′ = 0 at the boundaries. If we
assume that u′ = 0 at y = 0, L, then in the inviscid limit it follows that ∂yρ

′ = 0 at
y = 0, L. Hence the condition

u′ = 0,
∂ρ ′

∂y
= 0 at y = 0, L (2.8)

is consistent with (2.1)–(2.4) and (2.6). If ν �= 0 and κ �= 0, the boundary conditions
(2.6) and (2.8) are also consistent with (2.1)–(2.4), and they are used in what follows.

A streamfunction ψ for the meridional velocity perturbations is introduced as

v′ = −∂ψ

∂z
, w′ =

∂ψ

∂y
, (2.9)

so that the vorticity ∂yw
′ −∂zv

′ = ∇2ψ , with ∇2 = ∂2
y +∂2

z . Through cross-differentiation
a single equation for ψ follows:

DκD
2
ν(∇2ψ)+Dκ∂z(f Q∂zψ)+Dν∂y(N

2∂yψ) = 0, where f Q = f (f −Λ), (2.10)
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and

Dν = ∂t − ν∇2, Dκ = ∂t − κ∇2. (2.11)

In this study N 2 = constant and f Q = constant. With the boundary conditions (2.6)
and (2.8), (2.10) allows simple normal-modes solutions

ψ = exp(st) sin(lπy/L) exp(imπz/H ), l = 1, 2, 3, . . . , (2.12)

with the real part understood. The streamlines in the meridional plane will resemble
cells of overturning motions of alternating sign. Note that we treat the domain in
the vertical as unbounded. The vertical (z) coordinate has been non-dimensionalized
with an arbitrary length scale H . Without loss of generality we put H = L in the
analysis that follows. In § 5 we discuss how things change when H �= L. While l can
only take discrete values, the non-dimensional vertical wavenumber m can take any
real positive value.

If κ = ν =0, the dispersion relation is

s2 = −m2f Q + l2N2

l2 + m2
. (2.13)

Instability is clearly only possible if f Q < 0. When f Q < 0, growth occurs for all m

exceeding the buoyancy cutoff wavenumber, i.e. for

m >
N

|f Q|1/2
l. (2.14)

For any given l, the growth rate approaches the inviscid maximum s = s� = |f Q|1/2 in
the limit m → ∞, i.e. for cells that become infinitely ‘flat’ in the vertical direction.

3. Linear stability boundaries
When ν �= 0 and κ �= 0, instability can also only occur when f Q < 0. This is

not necessarily true for baroclinic flows (vertically sheared flows), which can be
unstable when f Q > 0 and the Prandtl number P �= 1 (McIntyre 1970; Kloosterziel
& Carnevale 2007). We replace f Q in (2.10) with −|f Q|, with the understanding that
f Q < 0. Substitution of (2.12) in (2.10) then yields a cubic in s. Non-dimensionally it
can be written as

s̃3 + Bs̃2 + Cs̃ + D = 0, with B =

(
2 +

1

P

)
a, (3.1)

C =

(
1 +

2

P

)
a2 − |f̃ Q| +

l2π2E

a
[|f̃ Q| + Ñ2],

D =
1

P
(a3 − |f̃ Q|a + l2π2E[|f̃ Q| + PÑ2]).

⎫⎪⎬⎪⎭ (3.2)

s̃ = s/f is the non-dimensional growth rate, f̃ Q = f Q/f 2, Ñ2 = N 2/f 2, P = ν/κ is
the Prandtl number and

a =
(
l2 + m2

)
π2E, where E =

ν

f L2
(3.3)

is the Ekman number (the ratio of viscous to Coriolis forces). We will use the relations

E =
|Ro|
Re

, |Ro| = Λ/f = |f̃ Q| + 1, Re =
�UL

ν
, (3.4)
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D < 0 D = 0 D > 0

s > 0 s > 0 s < 0
BC − D < 0 Res < 0 s = 0 Res > 0

Res < 0 s < 0 Res > 0
unstable unstable unstable

s > 0 s = 0 s < 0
BC − D = 0 Res < 0 s = 0 s = +iω

Res < 0 s < 0 s = −iω
unstable convection overstable

s > 0 s = 0 s < 0
BC − D > 0 Res < 0 Res < 0 Res < 0

Res < 0 Res < 0 Res < 0
unstable convection stable

Table 1. A summary of the properties of the three roots of the cubic (3.1) when B,C,D are
real and B > 0. Whenever the sign of the real part (Res) is given, s can either be real or is one
of a complex-conjugate pair. In the overstable case the frequency ω is determined by ω2 =C.

with Ro < −1 the Rossby number for the unstable anticyclonic shear flow (f̃ Q < 0),
Re the Reynolds number and �U =ΛL the velocity change across the width of
the domain. The dispersion relation (3.1) is the same as for the stratified Taylor–
Couette problem studied by Thorpe (1966). The dispersion relation for when the
hydrostatic approximation is made and horizontal diffusion is neglected can be found

in Dunkerton (1982). For convenience, we drop the tildes on s̃, f̃ Q and Ñ2.
Since B, C and D are real, either the three roots of the cubic are real or one root is

real and the other two are complex conjugates. The flow will be unstable if there is at
least one positive real root s > 0 or when there is a pair of complex-conjugate roots
with a real part Res > 0. Instability associated with a real root s > 0 is called stationary
instability. Instability associated with complex-conjugate roots with Res > 0, is called
oscillatory instability.

In Appendix A we show that if there is a real root s > 0, then s < |f Q|1/2. If there
is a pair of complex conjugate roots s = b ± iω with b > 0, then Res = b < |f Q|1/2.
Thus, the growth rates for both stationary instability and oscillatory instability are
bounded from above by |f Q|1/2.

Because B is always positive, the marginal stability boundaries can be determined
exactly by examination of the signs of D and BC −D. This was shown in Kloosterziel
& Carnevale (2003). Table 1 contains all the required information. For sufficiently
low Reynolds numbers, both D > 0 and BC − D > 0 for all a > 0. In that case the
flow is stable. In § 3.1 we discuss the transition from D > 0 to instability associated
with D < 0, whilst in § 3.2 we discuss the transition from BC − D > 0 to instability
implied by BC − D < 0. In § 3.3, we establish the exact marginal stability boundary
by combining the results from § 3.1 and § 3.2.

3.1. The convection boundary

Consider the coefficient D given by (3.2) and recall that a > 0 for any real l, m. For
given P, E, |f Q|, l and N 2, there may be a range of positive a-values for which D < 0.
This range shrinks to zero width on increasing E, or lowering the Reynolds number
Re. At that point, D = 0 for one particular a = ac with a corresponding root s =0,
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Figure 2. (a) The convection boundary Re
(c)
c (3.5) as a function of |f Q| for N2 = 0

(thick line) and N2 = 0.5, P = 1 (thin line). (b) The convection boundary (solid line) and

the overstability boundary (dashed line) Re
(o)
c (3.7) for N2 = 0.5 and P = 1. For P <Pc ≈ 1.44,

we have Re
(c)
c < Re

(o)
c for all |f Q| and all N2 > 0. Panel (b) is representative of all cases

with P <Pc when the marginal stability boundary is Re
(c)
c (thick line). Stability/instability as

indicated follows from table 1.

but D > 0 for all other a. For those a, one root will be real and negative. For small
enough Re, D will become positive for all a > 0.

The variable a is continuous since the vertical wavenumber m is continuous.
Critical values are found by simultaneously solving D = 0 and ∂D/∂a = 0. The critical
Reynolds number is

Re(c)
c = R1/2

c

(|f Q| + 1)[|f Q| + PN2]

|f Q|3/2
, where Rc =

27π4

4
(3.5)

is the critical Rayleigh number for the onset of convection in the classical
Rayleigh–Bénard problem with free-slip boundary conditions at the top and bottom
(Chandrasekhar 1961). If Re < Re(c)

c , then D > 0 for any normal-modes perturbation.
When Re > Re(c)

c , we have D < 0 for some perturbations and the system will be
unstable. When Re = Re(c)

c , we have D =0 when l =1 and m =mc, with

m2
c =

(
|f Q|

3

)1/2
Re(c)

c

π2(|f Q| + 1)
− 1 =

1

2
+

3P

2

N2

|f Q| . (3.6)

But, D > 0 for all other {l, m}. An example of Re(c)
c as a function of |f Q| is shown

in figure 2(a). We call Re(c)
c the ‘convection’ boundary, for reasons explained below.

With increasing N2 or P (when N 2 �=0), the curves shift to higher Re-values. For
l �= 1, the critical Reynolds number follows by multiplying the right-hand side of (3.5)
by l2. Hence, l =1 is the ‘most dangerous’ horizontal wavenumber, in the sense that
the transition from D > 0 to D < 0 occurs for the smallest critical Reynolds number.

3.2. The overstability boundary

When Re < Re(c)
c , stability is not guaranteed: although D > 0 for any perturbation,

roots of the cubic can have Res > 0 if BC − D < 0 for some {l, m} (see table 1).
Solving simultaneously for BC − D = 0 and ∂(BC − D)/∂a = 0, we find that if

Re < Re(o)
c = R1/2

c

(|f Q| + 1)

|f Q|3/2

[
1 + P

P
|f Q| +

(1 + P )2

2P 2
N2

]
, (3.7)
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then BC − D > 0 for any perturbation. We call Re(o)
c the ‘overstability’ boundary. For

Re > Re(o)
c , we have BC − D < 0 for some perturbations, which implies instability.

When Re = Re(o)
c , we have BC − D = 0 for l = 1 and m =mc, with

m2
c =

P

P + 1

(
|f Q|

3

)1/2
Re(o)

c

π2(|f Q| + 1)
− 1 =

1

2
+

3(P + 1)

4P

N2

|f Q| . (3.8)

For all other {l, m}, we have BC − D > 0 when Re = Re(o)
c .

3.3. The marginal stability boundary

If Re < Re(c)
c and Re < Re(o)

c , the flow is stable since then for any perturbation D > 0
and BC −D > 0. If Re(c)

c < Re(o)
c , instability will first set in when the Reynolds number

is increased to Re =Re(c)
c . On the other hand, if Re(c)

c >Re(o)
c , instability will commence

when Re reaches Re = Re(o)
c . To determine which critical Reynolds number is greater,

we equate (3.5) to the right-hand side of (3.7). We find that Re(c)
c =Re(o)

c if

|f Q| = |f Q|i =
N 2

P

[
P 3 − 1

2
(1 + P )2

]
, (3.9)

where |f Q|i is the intersection of the convection and overstability surface. Since
|f Q| > 0, they intersect only if P 3 > (1/2)(1 + P )2, i.e. for P >Pc ≈ 1.44, with Pc the
positive real root of P 3 − (1/2)(1 + P )2 = 0. This critical Prandtl number was first
found by Thorpe (1966) in his study of stratified Taylor–Couette flow.

When P <Pc, we have Re(c)
c < Re(o)

c for all |f Q| and N2 so that the flow is stable
for all Re < Re(c)

c . An example is shown in figure 2(b). When Re exceeds Re(c)
c , there

are {l, m} for which D < 0, which implies instability. Hence, the marginal stability
boundary is Re(c)

c . At the boundary all modes decay (D > 0 and BC − D > 0), except
for {l, m} = {1, mc}, with mc determined by (3.6). Perturbations with that vertical
wavenumber render D =0 and BC − D > 0, and can therefore excite a non-decaying
neutral mode with s = 0, i.e. steadily overturning motions or stationary convection.
Note that according to (3.6), if P 	 1, instability can set in for far lower wavenumbers
than the buoyancy cutoff wavenumber, given in (2.14).

If P >Pc, the marginal stability boundary is Re(o)
c for 0 < |f Q| < |f Q|i and Re(c)

c

for |f Q| > |f Q|i. An example is shown in figure 3. When |f Q| < |f Q|i instability sets
in through overstability at the marginal stability boundary. That is, if the Reynolds
number reaches Re = Re(o)

c , perturbations with vertical wavenumber mc given by (3.8)
can excite non-decaying, oscillatory modes with s = ± iω because then D > 0 and
BC − D = 0. For all other wavenumbers, the modes decay. In either case (P >Pc or
P <Pc), for small |f Q| and corresponding large critical Re, mc ∝ Re1/3 when N �=0.
The smallest critical Reynolds number is found in the limit N2 → 0 at |f Q| =1, i.e.
Re = (27π4)1/2 ≈ 51.3.

4. Vertical scale selection in unstable flows
4.1. Special case: Prandtl number P =1

When ν = κ , equation (3.3) is over-differentiated. The analysis should be based on the
quadratic:

(s + a)2 = |f Q| − l2π2E

a
[|f Q| + N2]. (4.1)
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Figure 3. An example of the marginal stability boundary representative of when P >Pc

(N2 = 0.5, P = 2.5). The convection boundary Re
(c)
c (thin solid) and the overstability boundary

Re
(o)
c (thin dashed line) intersect at {Re, |f Q|} = {Rei, |f Q|i} (indicated by �). The marginal

stability boundary is the thick solid line. To the left of |f Q|i it is the overstability boundary
Re

(o)
c , to the right the convection boundary Re

(c)
c . |f Q|i is determined by (3.9).

Overstability is impossible, as is seen by substituting s = iω. We simplify (4.1) by
writing

s = |f Q|1/2ŝ, a = ε|f Q|1/2â, with ε =
lC

Re1/2
(4.2)

and

C =

(
π2

2

)1/2
(|f Q| + 1)1/2(|f Q| + N2)1/2

|f Q|3/4
. (4.3)

This transforms (4.1) into

(ŝ + εâ)2 = 1 − 2ε

â
. (4.4)

Differentiating (4.4) with respect to â, we find (ŝ + εâ)(ε + ∂ŝ/∂â) = ε/â2. Maximal
ŝ = ŝ� are found by setting ∂ŝ/∂â = 0. Substitution in (4.4) shows that the maximum
occurs for â = â�(ε), where â� is the positive real root of

â4
� − 2εâ3

� = 1, and ŝ� = â�(â� − 3ε). (4.5)

When ε = 0, ŝ� takes the largest possible value ŝ� = 1, and â� =1. For ε = εc =(1/3)3/4,
â� = 3ε and ŝ� = 0. For ε > εc all modes are damped. Hence, there will be instability for
0 � ε < εc. With the definition of ε it follows again that l = 1 is the most dangerous
horizontal wavenumber and that the marginal stability boundary is Re =Re(c)

c , as in
(3.5), but with P = 1.

The positive real root â� of the quartic in (4.5) is

â�(ε) =
1

2

[
ε + (ε2 + h)1/2

]
+

1

2

[(
ε +

(
ε2 + h

)1/2)2 − 2

(
h +

εh

(ε2 + h)1/2

)]1/2

, (4.6)

with h = h(ε) = [−2ε2 + (4ε4 + (4/3)3)1/2]1/3 − [2ε2 + (4ε4 + (4/3)3)1/2]1/3 the negative
real root of h3 + 4h + 4ε2 = 0. These solutions are found using Ferrari’s and Vieta’s
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method dating back to the 16th century (see Kline 1972). Substitution of â� in the
equation for ŝ� in (4.5) yields the exact expression for s� = |f Q|1/2ŝ�(ε). For small ε

â�(ε) = 1 + 4
8
ε + 3

8
ε2 + O(ε3), ŝ�(ε) = 1 − 2ε − 1

2
ε2 + O(ε3). (4.7)

Because the exact solutions have little curvature for 0 � ε � εc, the first two or three
terms in (4.7) give excellent approximations, except near ε ≈ εc. For l = 1

s� = |f Q|1/2

⎡⎢⎢⎣
first−order︷ ︸︸ ︷

1 − 2C
Re1/2

− C2

2Re︸ ︷︷ ︸
second−order

− O
(
Re−3/2

)⎤⎥⎥⎦ . (4.8)

Thus, for large Re

s� ≈ |f Q|1/2

[
1 − (2π2)1/2 (|f Q| + N2)1/2

|f Q|3/4

(|f Q| + 1)1/2

Re1/2

]
. (4.9)

We call m = m� the vertical wavenumber of the fastest growing modes. Since
a = ε|Φ|1/2â and a =

(
l2 + m2

)
π2E, we find that for l = 1

m2
� =

Re|f Q|1/2εâ�(ε)

π2(|f Q| + 1)
− 1 =

|f Q|1/2

π2(|f Q| + 1)

⎡⎢⎢⎣
first−order︷ ︸︸ ︷

CRe1/2 +
1

2
C2 +

3C3

8Re1/2︸ ︷︷ ︸
second−order

+ O(Re−1)

⎤⎥⎥⎦−1.

(4.10)
For large Re therefore

m2
� ≈ 1

4

N 2

|f Q| +
(|f Q| + N2)1/2

(2π2)1/2|f Q|1/4

Re1/2

(|f Q| + 1)1/2
. (4.11)

In figure 4(a) we show the exact m� and the first-order approximation (4.11). This
example is representative of all possible combinations of |f Q| and N2 in that for
Re close to but larger than the critical value Re(c)

c , the approximation is already very
close to the exact value. In figure 4(b) we compare the exact s� with the first-order
approximation (4.9). When Re ≈ Re(c)

c , the error is substantial but rapidly diminishes
as Re increases.

4.2. Comparison with Dunkerton’s and Griffiths’ equatorial β-plane results

For a barotropic flow with uniform horizontal shear dU/dy = Λ in an environment
with constant buoyancy frequency N , Griffiths (2003a) has described to some detail the
linear vertical scale selection in inertial instability on the equatorial β-plane, assuming
P = 1. The marginal stability boundary was previously determined by Dunkerton
(1981). As is common in theoretical equatorial β-plane studies, horizontal diffusion
was ignored and the hydrostatic approximation was made.

Since f Q =βy(βy − Λ), it varies with latitude and f Q � 0 for 0 � y � Λ/β . A
negative minimum f Q = f Q = −(Λ/2)2 is found at y = ȳ = Λ/2β . This implies that
the maximum inviscid normal-modes growth rate is s� = |f Q|1/2 = Λ/2, taking Λ > 0.
A set of equations similar to (4.5) follows (Griffiths 2003a, equation 8a, b):

m̂6
� − 4εm̂5

� = 1, ŝ� = m̂2
�(m̂� − 5ε), where ε =

(
2νN2β2

Λ5

)1/3

(4.12)

is a non-dimensional parameter, ŝ� =(2/Λ)s� the non-dimensional maximum growth
rate and m̂� = (εΛ2/Nβ)m� the non-dimensional vertical wavenumber associated with



Vertical scale selection in inertial instability 259

1 2 3 4 5
12

14

16

18

20

1 2 3 4 5
0

0.2

0.4

0.6

(a) (b)

m� s�

Re (× 104) Re (× 104)

Figure 4. (a) The wavenumber m� of the fastest growing mode determined by the exact
solution (4.10) as a function of Re ∈ [5000, 50,000] for |f Q| = 1, N2 = 100 and P = 1
(thick solid line). The thin line is the first-order approximation of m� (4.11). (b) The exact
maximum growth rate s� = |f Q|1/2ŝm as a function of Re (thick solid line) and the first-order
approximation of s� (thin line) given in (4.9). Growth commences for Re = Re

(c)
c ≈ 5180 with

mc ≈ 12. The second-order approximations (not shown) virtually coincide with the exact
solutions for all Re.

maximal growth. Whereas we use a non-dimensional vertical wavenumber, in Griffiths’
study m� has the dimension of length−1.

At the marginal stability boundary instability sets in through stationary convection
(s = 0) when ε = εc = 5−5/6, with a corresponding m̂� = m̂c =5εc = 51/6. Defining the
Reynolds number as in (3.4) by Re =�UL/ν, with �U = ΛL and L =Λ/β the width
of the unstable domain, Griffiths’ and Dunkerton’s results imply

Re(c)
c = 2 × 55/2 N2

Λ2
, mc = 5

N

Λ
, where Re =

Λ3

νβ2
. (4.13)

The critical wavenumber mc along the stability boundary has been non-
dimensionalized by multiplying with the length scale L = Λ/β .

If we also make the hydrostatic approximation and ignore horizontal diffusion,
the first term in (2.10) containing ∇2ψ must be replaced by ∂2

z ψ (hydrostatic
approximation), and ∇2 by ∂2

z in Dν and Dκ , defined in (2.11) (no horizontal diffusion).
The consequence is that we must replace |f Q| + PN 2 with PN2 in (3.5), and the
constant 1/2 in (3.6) must be dropped. For P = 1, we find that

Re(c)
c = R1/2

c

N2Λ

|f Q|3/2
, mc =

(
3

2

)1/2
N

|f Q|1/2
. (4.14)

Identifying |f Q| ↔ (Λ/2)2, we see that (4.13) and (4.14) are essentially the same.
In Dunkerton (1982), the stability analysis of the equatorial shear flow is extended

to P �=1. The marginal stability criterion for the existence of a neutrally stable mode
(s = 0) is given in terms of the critical shear and corresponding vertical wavenumber
(equation 1.2a,b in Dunkerton 1982). His criterion can again be expressed as a
critical Reynolds number Re(c)

c , with PN 2 replacing N2 in (4.13). The critical vertical

wavenumber mc follows by replacing N with
√

PN2. On the f -plane, Re(c)
c and mc

follow in the same fashion by substituting PN2 for N 2 in (4.14). Further, Dunkerton
concluded that for P � 3/2 instability sets in through overstability, but no explicit
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expression equivalent to our critical Reynolds number Re(o)
c (3.7) is given. It is not

clear whether this critical Pc ≈ 3/2 should actually be Thorpe’s (1966) Pc ≈ 1.44, which
is a root of an explicit cubic, given above after equation (3.9). Given the cumbersome
nature of the dispersion relation, it appears that Dunkerton found Pc numerically.
Dunkerton also mentions that for a constant shear flow on the f -plane, bounded by
rigid walls, the marginal stability criteria closely resemble those for the β-plane flow.
Our explicit expressions confirm this.

Whereas the marginal stability criteria for the β-plane flow and f -plane flow are
qualitatively the same, we find significant differences with regard to the scale selection
at large Re. For small ε or large Re, Griffiths (2003a) found using (4.12) that for the
β-plane flow with P = 1

m̂� = 1 +
2ε

3
+

10ε2

9
+ · · · , so that ŝ� = 1 − 3ε − 28ε2

9
+ · · · . (4.15)

With Re as defined in (4.13), it follows that for large Re

s� =
Λ

2
ŝ� ≈ Λ

2

[
1 − 3

(
2N 2

Λ2Re

)1/3
]

, m� ≈
(

NRe

2Λ

)1/3

. (4.16)

If again we also make the hydrostatic approximation and ignore horizontal diffusion,
we must replace |f Q|+N2 with N2 in (4.9) and (4.11). The correction to the maximum
growth rate in s� is then proportional to (N2/Re)1/2. But, for the β-plane flow the
correction scales with (N2/Re)1/3. For our f -plane flow we find m� ∝ (N2Re)1/4,
whereas on the β-plane m� ∝ (NRe)1/3. Not surprisingly, in either case the correction
to the maximum inviscid growth rate is proportional to νm2

�.

4.3. General case: arbitrary Prandtl number

The question of how the vertical scale selection is affected by varying P is now
considered. For our uniform shear flow on the f -plane we assume that when P �=1,
for large Re the fastest growing mode is associated with a positive real root of (3.1),
i.e. with stationary instability. Maximal s = s� and corresponding a = a� (or m�) can
be determined by simultaneously solving the cubic (3.1) and the equation that follows
by taking the ∂/∂a-derivative of (3.1) and equating the result to zero after setting
∂s/∂a =0. We seek power series solutions for s = s� and a = a� of the form

s� = |f Q|1/2[ŝ0 + ŝ1ε + ŝ2ε
2 + · · ·], a� = εα|f Q|[â0 + â1ε + â2ε

2 + · · ·], (4.17)

with ε = Re−1/2. Setting l = 1, we find α = 1, ŝ0 = 1, â0 = C, ŝ1 = −2C, â1 = 1
2
C2 and

ŝ2 = −1

2
C2 +

(
C2

P
− D2

)
, â2 =

3C3

8
+

1 + P

2P 2
[P CD2 − C3]. (4.18)

C is defined in (4.3) and

D =

(
π2

2

)1/2
(|f Q| + 1)1/2(|f Q|/P + N2)1/2

|f Q|3/4
. (4.19)

For large Re we obtain

s� = |f Q|1/2

⎡⎢⎢⎣
first−order︷ ︸︸ ︷

1 − 2C
Re1/2

+
ŝ2

Re︸ ︷︷ ︸
second−order

+O(Re−3/2)

⎤⎥⎥⎦ , (4.20)
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and

m2
� =

|f Q|1/2

π2(|f Q| + 1)

⎡⎢⎢⎣
first−order︷ ︸︸ ︷

CRe1/2 +
1

2
C2 +

â2

Re1/2︸ ︷︷ ︸
second−order

+O(Re−1)

⎤⎥⎥⎦ − 1. (4.21)

If we assume that the fastest growth is associated with the real part Res = b of
complex conjugate roots s = b ± iω (oscillatory instability), we can proceed in the
same fashion with the cubic for b, which is given in Appendix A (equation (A4)).
This yields a maximal b = b�, with

b� ≈ |f Q|1/2

[
1

2
−

(
1 + P

P

)1/2 C
Re1/2

]
, (4.22)

and corresponding

m2
� ≈ |f Q|1/2

π2(|f Q| + 1)

[(
P

1 + P

)1/2

CRe1/2 +
(P 2 − 4P − 1)C2

(1 + P )2

]
− 1. (4.23)

This would imply that for large Re, s� exceeds b�. We therefore expect that the fastest
growing modes are associated with stationary instability when Re becomes sufficiently
large. Further, comparing (4.20) with (4.8), we see that the maximum growth rates
start to differ with the ŝ2/Re term when P �= 1. Similarly, m� differs from (4.10)
beginning with the â2/Re1/2 term when P �= 1. Thus, s� and m� converge for large Re

to the values found for P = 1, i.e. (4.9) and (4.11), respectively. Since the specific value
of P does not affect the leading-order behaviour, for large Re the scale selection and
maximum growth rate are not sensitive to the value of the Prandtl number.

These predictions can easily be tested by numerically searching for the maximal
growth rates as a function of m. An example is shown in figure 5. This is representative
of all cases with P >Pc and |f Q| < |f Q|i. The marginal stability boundary is as in
figure 3. When Re crosses the overstability boundary Re(o)

c , oscillatory instability
commences, associated with complex-conjugate roots of the cubic for which BC −
D < 0 and D > 0 (table 1). The fastest growth is for the vertical wavenumber m�

(thick dashed line in figure 5a) with the fastest growth rate s� being the real part b�

of a pair of complex-conjugate roots (thick dashed line in figure 5b). As Re is further
increased, the maximum growth rate becomes associated with a positive real root
(stationary instability). There is a jump in m� to a higher value. For ever increasing
Re, the fastest growth remains associated with a positive real root (thick solid lines in
figure 5a, b). The discontinuous behaviour at Re ≈ 1.8 × 104 is not related to crossing
the convection boundary Re(c)

c as we move vertically in figure 3 to the left of |f Q|i.
In this example Re(c)

c ≈ 3.6 × 104, and the positive real root remains associated with
BC − D < 0 and D > 0. We are not able to predict analytically at what Reynolds
number the jump will occur.

Also shown in figure 5 are the first- and second-order approximations to m� and
s�, given in (4.21) and (4.20), respectively. These approximations are not good at
the lower Reynolds numbers when the fastest growth is associated with oscillatory
instability. For larger Re, when the maximum growth is associated with stationary
instability, they become excellent.

Since instability always sets in through overstability when P >Pc and |f Q| < |f Q|i,
the fastest growing modes for Reynolds numbers slightly above Re(o)

c must be
associated with a pair of complex-conjugate roots. In that case we expect that
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Figure 5. (a) Numerically determined m� as a function of Re ∈ [3000, 50,000] for |f Q| = 1,
N2 = 100 and P = 7 (thick dashed/solid) and (b) the corresponding maximum growth rate s�

(thick dashed/solid). In both panels thick solid lines indicate stationary instability and thick

dashed lines oscillatory instability. Growth commences at Re =Re
(o)
c ≈ 3400 with mc ≈ 9.3. This

example is representative of all cases with P > Pc and |f Q| < |f Q|i. Also shown in (a) is the
the first-order approximation (thin dotted) and the second-order approximation (dash-dotted)
according to (4.21). In (b) the thin dotted line is the first-order approximation to s� and the
dash-dotted line the second-order approximation, given by (4.20). In (a) the thinner dashed
line is the first-order approximation (4.23) and in (b) the first-order approximation to b� given
by (4.22).

m� will, to leading order, be determined by (4.23), and the fastest growth rate by b�

as in (4.22). This is also verified in figure 5.
When P >Pc, but |f Q| > |f Q|i, instability will set in through stationary convection

when Re = Re(c)
c (see figure 3). For slightly larger Re, the fastest growth is associated

with a positive real root and wavenumber which renders D < 0. For further increasing
Re, stationary instability persists. In all cases we looked at, including extremely
large and small |f Q|, N2, we find essentially the situation as in figure 4: the
first-order approximations are good except near Re ≈ Re(c)

c , while the second-order
approximations are for all Re virtually indistinguishable from the exact, numerically
determined values.

What remains are cases with P <Pc, when instability will always set in through
stationary convection (see figure b). For P ≈ 1, again the first- and second-order
approximations are good and excellent, respectively. For P 	 1, we find generally
that for Re near the critical value, the first-order approximation is quite good but
the second-order approximation not good at all. An example is shown in figure 6.
The first-order approximations to m� and s� are close to the calculated values, but
near Re = Re(c)

c ≈ 100, the second-order approximations are dismal. This is because
for P 	 1, the coefficients â2 and ŝ2 (4.18) become large compared to â1 and ŝ1,
respectively.

5. Summary and discussion
We have studied a simple model of a barotropic shear flow that is inertially unstable

in a region of uniform anticyclonic shear. This region of constant f Q < 0 is artificially
terminated at free-slip sidewalls. The analytical simplicity of the problem studied in
this paper allowed us in § 3 to determine the exact critical Reynolds number required
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Figure 6. (a) m� as a function of Re ∈ [100, 50,000] for |f Q| = 1, N2 = 10 and P = 0.1 (thick
line), the first-order approximation (dotted line) and the second-order approximation (dashed
line). (b) The corresponding maximum growth rate s� (solid), the first-order approximation
(dotted line) and the second-order approximation (dashed line). Growth commences for

Re = Re
(c)
c ≈ 100 with m= mc ≈ 1.4.

for the onset of instability as a function of the ambient buoyancy frequency N , the
Prandtl number P and the magnitude of the anticyclonic shear, measured by |f Q|.
Since the dispersion relation (3.1) is the same as for stratified Taylor–Couette flow in
the narrow-gap approximation and free-slip boundary conditions, these results can be
seen as a precise description of the marginal stability criteria for that problem. In the
pioneering study of Thorpe (1966) and in, for example, Caton, Janiaud & Hopfinger
(2000), only asymptotic results are reported, i.e. for when viscosity becomes very
small.

We can now estimate that, for example, if P = 1 the critical Reynolds number
Re =Re(c)

c ≈ 560 and mc ≈ 4, when N 2/f 2 = 10 and |f Q| = 1 (Rossby number
Ro = −Λ/f = −2). If N2 = 104f 2 (a value often quoted as typical for the oceans),
this increases to Re(c)

c ≈ 5 × 105 and mc ≈ 120. With P = 7, instability for |f Q| =1 sets
in through overstability (because |f Q| < |f Q|i ≈ 4 × 104) at Re = Re(o)

c ≈ 3 × 105 with
m = mc ≈ 90. For smaller |f Q| (weaker shear), these critical numbers become even
larger. Thus, for such flows extremely high Reynolds numbers would be required to
observe any incipient amplification of the inertial instability. Also in such cases with
mc ≈ 102, in numerical simulations rather high resolutions in the vertical would be
required to resolve the overturning motions. Certainly two or three grid points per
cell with height �z =L/mc would not be sufficient and one would have to use 103

grid points in the vertical. But, mc gives the total number of cells of overturning
motions found over a total depth H equal to the width L of the unstable region,
because we used a vertical length scale H =L from the outset. If the barotropic shear
is confined to, say, a total depth H = L/10, and mc = 100, the number of cells would
be H/L × mc =10. Thus with an aspect ratio H/L = 1/10, the number of grid points
in the vertical can be reduced by a factor of 10.

In § 4.1 we calculated the vertical wavenumber m� of the fastest growing modes and
the growth rate s�, when Re exceeds the critical value for instability and P = 1. For
large Re, we predict that m� ∝ Re1/4, while the correction to the maximum inviscid
growth rate s� is predicted to be proportional to Re−1/2. This disagrees with the
equatorial β-plane predictions of Griffiths (2003a), as noted in § 4.2. But, the marginal
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stability criteria for our f -plane flow and the β-plane flow are, apart from constants
of proportionality, the same.

The correction to the maximum inviscid growth rate in s� for the β-plane flow scales
with Re−1/3, while m� ∝ Re1/3. These β-plane results compare well with the findings
of Kloosterziel et al. (2007). They studied the scale selection in inertially unstable
barotropic vortices in a rotating and uniformly stratified environment, taking P =1.
Through numerical simulations, the vertical scale and growth rate of the fastest
growing perturbations were measured in the early, linear stage of the unfolding of
the instability. Both N/f and Re were varied, but owing to numerical constraints
both parameters were confined to modest ranges. To a fair degree of precision, it
was found that m� ∝ Re1/3, with a viscous correction to the inviscid maximum
growth rate proportional to Re−1/3. This agreement with the, at first sight, seemingly
unrelated predictions of Griffiths (2003a) is not a coincidence, as has become clear
while preparing the revision of this manuscript. In Appendix B (by S. D. Griffiths),
it is shown that for parallel shear flows with variable f Q, generally for large Re and
corresponding large |m|, the same scalings as for the uniform shear flow on the β-plane
are expected. The reason is that in the limit of large Re, the eigenvalue problems
converge to the canonical form of the quantum harmonic oscillator equation. A
similar asymptotic analysis for circular vortices has as yet not been performed. But,
it seems unlikely that the scaling laws will be different.

The asymptotic analysis in Appendix B further suggests that, when P �= 1, for
sufficiently large Re the maximal growth rates and the vertical scale selection become
weakly dependent on the value of P . This was explicitly shown in § 4.3 for our f -plane
flow with f Q = constant. But, the scaling laws we have found, such as m� ∝ Re1/4,
cannot be inferred from an analysis similar to that in Appendix B, which predicts
m� ∝ Re1/3. The reason is that for flows with variable f Q and a negative minimum
f Q at y = ȳ, the fastest growing normal modes have a structure that varies with
y as exp(−c|m|(f Q′′)1/2(y − ȳ)2/2), with c a positive function of N and f Q, and
f Q′′ =d2(f Q)/dy2 at y = ȳ, which is of course positive if there is a simple negative
minimum. Hence, for increasing |m|, the modes become ever more confined to a
region about y = ȳ. This ‘shrinking’ of the modes in the cross-stream (y) direction
does not occur if f Q has a constant region where its value is minimal and negative,
since then f Q′′ = 0.

If more realistic unbounded flows with, say, uniform shear in a transition region
between two counterflowing currents are considered, an analysis is still feasible, in
particular when the hydrostatic approximation is made and horizontal diffusion is
ignored. In the simplest possible model, with constant f Q < 0 in a strip of finite
width, and f Q = f 2 outside this region, the eigenvalue problem which determines the
relation between the cross-stream (y) structure of the normal modes and the vertical
wavenumber, growth rate, etc., is essentially that encountered in quantum mechanics
when solutions of the Schrödinger equation for a finite-depth square potential well
are sought. The equivalent eigenvalue problem corresponding to the bounded flow
studied in this paper is that of the Schrödinger equation for an infinitely deep square
potential well. For the simple unbounded flow, the eigenmodes have a y-dependent
part ψ̃(y), which is non-zero outside the unstable strip, i.e. ψ̃(y) �= 0 where f Q = f 2

(the stable region). But |ψ̃(y)| decays exponentially in the stable region, and ever more
rapidly with increasing Re and vertical wavenumber m. Hence, ψ̃(y) becomes more
and more confined to the unstable region where there is constant f Q < 0, but never
shrinks to zero width. For large |m|, the modes differ little from the sinusoidal mode
with l = 1 that we find for the bounded flow. A detailed comparison of the results
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presented in this paper with the marginal stability criteria and scale selection for such
an unbounded flow is left for future work. If the hydrostatic approximation is not
made and horizontal diffusion is not ignored, instead of a Schrödinger-like equation
d2

yψ̃(y)−F (· · ·)ψ̃(y) = 0, equations follow containing the sixth-order derivative (when
P = 1), or the eighth-order derivative (when P �= 1). In view of the discussion in § 4.2,
we expect little to be gained from a study of these far more complicated eigenvalue
problems, unless N2 	 |f Q| (when P = 1) or PN2 	 |f Q| (when P �=1).
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Appendix A. Bounds on growth rates
The cubic (3.1) can be written as(

s +
a

P

)
[(s + a)2 − |f Q|] +

(
s +

a

P

) π2l2E

a
|f Q| + (s + a)

π2l2E

a
N2 = 0. (A 1)

If there is a positive real root s > 0, then (s + a)2 − |f Q| has to be negative, since
E, P, l2, a and |f Q| are all positive and N 2 � 0. Hence we must have s < |f Q|1/2.
There can also be complex-conjugate pairs of roots. Setting s = b ± iω in (A 1), the
real part is(

b +
a

P

) [
(b + a)2 − ω2 − |f Q| +

l2π2E

a
|f Q|

]
+ (b + a)

(
l2π2E

a
N2 − 2ω2

)
= 0,

(A 2)
and the imaginary part is

±iω

[
(b + a)2 − ω2 − |f Q| +

l2π2E

a
|f Q| + 2

(
b +

a

P

)
(b + a) +

l2π2E

a
N2

]
= 0.

(A 3)

Since by assumption ω �= 0, an equation ω2 = · · · follows. Substitution in (A 2) yields

(b + a)[(b + a)2 − |f Q|] + (b + a)

[
|f Q|

a
+

N 2

2a

]
l2π2E

+
(
b +

a

P

) [(
b +

a

P

)
(b + a) + 2(b + a)2 +

l2π2E

2a
N2

]
= 0. (A 4)

If b > 0, we see that (b + a)2 − |f Q| has to be negative. Therefore, if there are
complex-conjugate roots with real part Res = b > 0, then b < |f Q|1/2.

Appendix B. Weakly diffusive scale selection for the inertial instability of an
arbitrary shear flow

By Stephen D. Griffiths

Department of Physics, University of Toronto, ON, M5R 2S4, Canada

We start from equations (2.1)–(2.5), where we now allow U to vary arbitrarily with
y. Taking N 2 to be constant, the homogeneity in z allows us to consider disturbances
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of the form

(u′, ψ, σ ) = Re[(ũ(y), ψ̃(y), σ̃ (y)) exp(st) exp(imz)],

where ψ is the streamfunction (2.9), and σ = −gρ ′/ρ0 is a fluctuating buoyancy
acceleration. Differentiating (2.7) with respect to t , substituting from (2.1) and (2.4),
and dividing by m2 gives

(N2 + s2)

m2

d2ψ̃

dy2
− (s2 + f Q)ψ̃ =

ν

m2

(
d2

dy2
− m2

)[
s

(
d2

dy2
− m2

)
ψ̃ + if mũ +

κ

ν

dσ̃

dy

]
,

(B 1)

where Q(y) = f − dU/dy is the absolute vorticity.

B.1. The non-diffusive system

When ν = κ =0, it is well-known that instability is only possible when f Q < 0
somewhere in the flow. Denoting the cross-stream location of the global minimum of
f Q by y, and its value by f Q < 0, the maximum growth rate of disturbances is given
by |f Q|1/2. This can be established by multiplying (B 1) by ψ̃∗ and integrating across
the domain, after setting the right-hand side of (B 1) to zero. Furthermore, this growth
rate is approached as |m| → ∞, by disturbances which become highly localized in the
cross-stream direction around y = y. The cross-stream localization occurs on a length
scale ∼ |m|−1/2, for both unstratified flows (e.g. Bayly 1988) and stratified flows (e.g.
Griffiths 2007). Thus, the lateral boundary conditions – whether they be for periodic,
bounded or unbounded flow – become irrelevant in this limit.

To study these most unstable modes, it is necessary to introduce a rescaled cross-
stream coordinate Y , the optimal choice being

Y = (a|m|)1/2(y − y), where a =

(
(f Q)′′

2(N2 + |f Q|)

)1/2

, (B 2)

and where (f Q)′′ =d2(f Q)/dy2 evaluated at y = y is assumed to be non-zero. The
limiting dynamics are obtained by making a Taylor expansion for f Q around y = y

(justifiable because of the cross-stream localization of the modes), and by looking for
small deviations of s2 from its limiting value:

f Q ∼ f Q+
(f Q)′′

2a|m| Y 2 +
(f Q)′′′

6(a|m|)3/2
Y 3 + · · · , s2 ∼ |f Q|−

(
a

|m|

)
s2
1 + · · · , |m| → ∞.

Substituting in (B 1), and writing d2/dy2 = a|m|d2/dY 2, the O(1) terms cancel, and at
O(|m|−1) we have

(N 2 + |f Q|) a

|m|

[
d2ψ̃

dY 2
+

(
s2
1

N2 + |f Q|
− Y 2

)
ψ̃

]
= 0. (B 3)

This equation does indeed describe localized solutions, provided

s2
1 = (2n + 1)(N 2 + |f Q|), n = 0, 1, 2, . . . ,

with corresponding eigenfunctions ψ̃ =Hn(Y ) exp(−Y 2/2), where Hn is the nth order
Hermite polynomial. Thus, the limiting growth rate is given by

s2 ∼ |f Q| − (2n + 1)

|m|

(
(f Q)′′(N2 + |f Q|)

2

)1/2

+ · · · , |m| → ∞. (B 4)
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Although higher-order corrections to s2 and ψ̃ may be derived, (B 4) is sufficient
for our purposes since it captures the inviscid monotonic growth rate increase as
|m| → ∞. From (2.1) and (2.4), the remainder of the leading-order solution is

ũ ∼ − imQ

|f Q|1/2
ψ̃, σ̃ ∼ −N2(a|m|)1/2

|f Q|1/2

dψ̃

dY
. (B 5a, b)

B.2. The diffusive system

We now evaluate the effect of diffusion on the inertial instability when the Prandtl
number P = ν/κ is of order unity. We study the regime where ν and κ are small, so
that the inertial instability remains strong, with the large vertical wavenumber limit
remaining appropriate. We anticipate that (B 4) will be appropriate for moderately
large |m|, describing an almost inviscid growth rate increase, whilst as |m| → ∞ more
appropriate would be a relationship describing an almost completely diffusive decay.
We need to assess for what scaling of |m|, in terms of ν and κ , the inviscid growth
and diffusive decay terms balance, which will yield the most unstable modes.

Since the inviscid growth term of (B 4) appears at O(|m|−1) in (B 1), we simply
need to calculate when the terms on the right-hand side of (B 1) scale like |m|−1ψ̃ , as
|m| → ∞. Using (B 5a, b), the largest terms on the right-hand side of (B 1) as |m| → ∞
are sνm2ψ̃ and −iνf mũ, and are those originating from vertical diffusion in the two
horizontal momentum equations. Using (B 4) and (B 5a), to leading order these two
terms sum to

2νm2|f Q|1/2ψ̃. (B 6)

Using (B 5b), the term −κdσ̃ /dy (originating from the vertical diffusion of heat) scales
like κmψ̃ , and is much smaller than (B 6), as are all terms originating from horizontal
diffusion (∂2/∂z2 � ∂2/∂y2 under the scaling (B 2)). Thus the regime of interest occurs
when (B 6) scales like |m|−1ψ̃ , i.e. when |m| ∼ ν−1/3. With this understanding, (B 6)
may be added to the right-hand side of (B 3), yielding a modified solvability condition

s2 ∼ |f Q| − (2n + 1)

|m|

(
(f Q)′′(N2 + |f Q|)

2

)1/2

− 2νm2|f Q|1/2 + · · · , (B 7)

where |m| → ∞, ν → 0, and |m| ∼ ν−1/3. This is a self-consistent procedure, since
νm2 ∼ κm2 ∼ |m|−1 	 1, so that the approximately non-diffusive balances leading to
(B 5a, b) remain valid.

Equation (B 7) describes the diffusive modification of the inertial instability.
Although not valid for arbitrary ν and |m|, it should describe the most unstable
inertial instabilities as ν ∼ κ → 0. Maximizing s2 with respect to |m|, the maximum
growth rate s∗ satisfies

s2
∗ ∼ |f Q| − 3

2
{2ν(2n + 1)2|f Q|1/2(f Q)′′(N2 + |f Q|)}1/3 + · · · , ν → 0, (B 8)

which is largest for the n =0 mode. The most unstable vertical wavenumber m∗
satisfies

|m∗| ∼
{

2n + 1

4ν

(
(f Q)′′(N2 + |f Q|)

2|f Q|

)1/2
}1/3

+ · · · , ν → 0. (B 9)

These scalings, with s∗ decreasing from |f Q|1/2 like ν1/3 and m∗ ∼ ν−1/3, are consistent
with the particular cases reported by Griffiths (2003a), and Kloosterziel et al. (2007).
There is disagreement with the results of § 4.1 because it is a case for which (f Q)′′ = 0.
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The scalings apply when ν �= κ (unless ν 	 κ), but the effects of κ on the inertial
instability are rather weak in the large vertical wavenumber regime, as was noted
in § 4.3 for the uniform shear flow. The terms involving κ appear as an O(|m|−2)
correction to the growth rate in (B 7), and are not calculated here.

Less cumbersome scalings for m∗ can be derived from (B 9) from case to case. We
denote the length scale of f Q by L, and take Q ∼ f , since for instability horizontal
shears must be larger than f . Thus:

(a) For unstratified flow on the f -plane, (B 9) implies m∗ ∼ (f/νL)1/3. Since L

must also be the length scale for U , and f is a characteristic shear, a characteristic
velocity for the basic flow is just f L, so that we can write the Reynolds number as
Re = f L2/ν, implying m∗ ∼ Re1/3L−1.

(b) For hydrostatic flow (N � f ) on the f -plane, (B 9) implies m∗ ∼ (N/νL)1/3 ∼
(N/f )1/3Re1/3L−1. The characteristic vertical wavenumbers are much larger for this
hydrostatic case than for the unstratified case, since stratification acts to reduce the
vertical extent of the overturning circulations.

(c) For hydrostatic flow (N � f ) on the equatorial β-plane, the length scale L of f Q

is no longer that of U . Rather, denoting a characteristic shear by Λ, f Q ≈ βy(βy −Λ)
so that L ∼ Λ/β , and Q ∼ f ∼ βL ∼ Λ. Thus m∗ ∼ (Nβ/Λν)1/3 ∼ (N/Λ)1/3Re1/3L−1,
consistent with the scaling given by Griffiths (2003a), as discussed in § 4.2.
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